
Quantifying the impact of data encoding on DNN
fault tolerance

Edward Pyne
Harvard University
Cambridge, USA

Lillian Pentecost
Harvard University
Cambridge, USA

Udit Gupta
Harvard University
Cambridge, USA

Gu-Yeon Wei
Harvard University
Cambridge, USA

David Brooks
Harvard University
Cambridge, USA

Abstract—DNN fault tolerance is known to vary depending
on per-model and per-layer characteristics, and system archi-
tects can exploit these variations to improve energy and space
efficiency [3], [5], [7], [9], [10]. In this work, we demonstrate
that the data encoding format of weight values impacts DNN
fault tolerance by up to 10x, and we quantify the substantial
variation in fault tolerance across DNNs trained to convergence
with identical training hyperparameters. This variation may be
reduced with alternative weight encodings. Both results have
impacts on making robust design decisions to maintain model
accuracy. These studies are enabled by an updated open-source
fault injection framework for DNNs designed to quantify the
impact of faults on both weight and activation values in both
training and inference.

Index Terms—machine learning, deep learning, approximate
computing, codesign

I. INTRODUCTION

Deep Neural Networks (DNNs) are deployed on a variety of
different hardware platforms, such as datacenters, mobile, and
edge clients [1], [2]. In addition to varying performance and
energy capabilities, frequency and type of hardware errors are
important characteristic of these platforms. In particular, hard-
ware systems and applications are provisioned to run within
strict fault tolerance bounds in order to ensure reliable execu-
tion and efficiency. However, relaxing these constraints may
enable increased performance, energy, and area efficiency, and
previous work has demonstrated that DNN applications may
maintain accuracy under relaxed bounds [3], [5], [8]. Thus,
characterizing and optimizing the fault tolerance capabilities
of DNN applications can enable significant improvements in
performance, energy, and area efficiency.

DNNs can tolerate orders of magnitude higher bit error rates
(BERs) than traditional CPU workloads [3]–[5], and tools have
been developed to simulate DNN faults in software [3], [4],
[6]. This fault tolerance can be exploited to trade off individual
errors during DNN inferences for performance, area, and
energy efficiency without sacrificing overall DNN accuracy.
For example, recent work has proposed exploiting DNN fault
characteristics for lossy algorithmic compression [7]–[10],
embedded non-volatile memory storage [11], and hardware
acceleration [5], [12], [13]. Unfortunately, the fault tolerance
of both weights and activations is model and layer specific [3],
[16], and architects must design for worst-case performance,
implying tight bounds on model variability can enable better
tuned designs.

This work improves DNN reliability by co-designing
datatype encodings for model parameters with hardware fault
tolerance. We build upon related work [3], [14] to evaluate
fixed-point representations for model parameters. We find
that changing data encoding from two’s complement to sign-
magnitude effectively mitigates the impact of sign bit errors,
allowing DNNs to maintain baseline accuracy at higher bit
error rates. Additionally, we find that instances of the same
model topology with identical hyperparameters and training,
differing only in random seed, may have significant variation
in fault tolerance.

In this paper, we make the following observations:
1) Compared to traditional two’s complement representa-

tion, sign-magnitude encoding improves fault tolerance
by up to 10x, nearly matching the impact of oracle
protection of the sign bit.

2) There is significant fault tolerance variation between
identical training runs. For example, instances of CNN-
based models (i.e., VGG) vary in fault tolerance by up
to 5x. If a model is retrained and redeployed, such as
in a self-driving car, assuming consistent fault tolerance
may be an inaccurate and even dangerous assumption.

3) Compared to traditional two’s complement, sign-
magnitude encodings suffer from up to 4x less variability
in fault tolerance across identical training runs of the
same model.

We develop and use an updated version of Ares [3] built
with PyTorch [15], which enables native CPU and GPU
injections of bitwise weight faults across multiple weight
encodings. The updated framework is released as an open-
source tool with additional models, support for activation
and training injections, and increased customizability for fault
model and datatype, as detailed in Table I.

II. ARES ENABLES STUDYING DNN FAULT INJECTION

DNN inference fault tolerance is determined by a variety
of factors. First, recent work demonstrates that layer type
(i.e., FC verus CNN versus RNN) impacts fault tolerance.
Second, weights and activations may have varying degrees of
fault tolerance [3], [16]. This work demonstrates other design
choices, such as bit representation, also impact fault tolerance.

To study the impact of datatype representation on fault
tolerance, we build on top of Ares, a high-level fault-injection

MNIST
FC

MNIST
LeNet

TIdigits
GRU

ImageNet
ResNet50

Imagenet
VGG16

CiFar10
VGG

10 7

10 6

BE
R

at
 .5

%
 E

rro
r T

hr
es

ho
ld Two's complement

Oracle sign protect
Sign-magnitude

Fig. 1. Sign-magnitude encoding results in models tolerating up to 10x higher
bit error rates (BERs) than two’s complement, nearly matching the effect of
oracle protection of the sign bit.

framework [3]. Fault models are user-configurable, and pro-
vided examples include Gaussian noise, uniformly random bit
flips, zeroing of values, and more. All types of faults, including
bit flips, can be performed on-GPU using tensor operations.

In order to study the implication of faults on DNNs, we
model the presence of faults by injecting them into repre-
sentations of quantized weights and activations. We model
weight faults as permanent flips in bits in the weight tensors.
In addition to weights, open source support for injections in
activations and hidden states (applicable for Recurrent NNs)
during model evaluation are added. All transformations may be
applied to any subset of model weights or activations, down
to particular bits of specified layers. In addition, injections
on weights, activations and gradients during training are now
supported. An interface to sweep hyperparameter values and
fault characteristics over many orders of magnitude is also
provided. A user can easily study a new model architecture by
extending the base model class, and existing PyTorch models
can be added in fewer than 20 lines of code.

III. DATA ENCODING IMPACTS FAULT TOLERANCE

How weights are represented in memory changes the im-
pact of certain bit flips, potentially affecting the model’s
vulnerability. In the standard two’s complement representation,
flipping the sign bit is equivalent to subtracting the largest
representable value for positive weights. DNN weights are

TABLE I
NEW ARES FAULT MODES AND EXPANDED CUSTOMIZABILITY

Feature Original Ares New Version
Framework Keras + PyTorch
Open-Source
Injection Modes

Weights + Activations, Gradi-
ents

Provided ImageNet
models

VGG16, ResNet50 + MobileNet, Incep-
tionV3

Data Encodings Fixed per-mode 2c, SM, Float
GPU Accelerated In-
jection

Activations + Weights, Gradients

clustered near zero, with fewer than 1 × 10−6 fraction of
weights in CiFar10-VGG12 larger than 1.5, so sign bit flips are
likely to have a large impact on the magnitude of the weight.

To determine the extent of this impact, Ares is used to
simulate oracle protection to the sign bit of weights, where
flips that would occur in the sign bit are silently suppressed.
Fault injections are performed on the weights of the six
baseline models used in [3] (MNIST FC, MNIST LeNet5,
ImageNet VGG16, ImageNet ResNet50, CiFar10 VGG12 and
TIDIGITS GRU), with the per-model quantization as detailed.

For each model, an instance is trained, then trials are
performed across 50 bit error rates in the range [10−9, 10−3].
For each trial, the test set error after fault injection is recorded.
At each BER, 20 trials are averaged to estimate the mean
model degradation at that fault rate. Taking the model test error
with no fault injections as the baseline, the maximum bit error
rate with less than a relative .5% increase in error is calculated.
Compared to standard two’s complement, oracle protection
of only the sign bit gives up to an order of magnitude
improvement in fault tolerance (Figure 1).

Unfortunately, completely protecting sign bit errors may
require architectural tradeoffs, such as storing the bits on a
different memory technology or with error correction, which
introduces overhead. We achieve the benefits of suppressing
sign errors without special protection by changing the bit
representation of the weights to sign-magnitude (SM).

In sign-magnitude encoding, flipping the sign bit transforms
x to −x while leaving the absolute value unchanged. If M is
the largest representable value, for x such that |x| ≤ M/2, a
sign bit error changes x by less in sign-magnitude represen-
tation than in two’s complement. For values close to 0, the
effect on weight magnitude of a sign bit error is much larger
in two’s complement than sign-magnitude.

For CiFar-VGG12, which has an approximately normal
distribution of weights with mean zero and standard deviation
less than .02, for over 99.9% of weights a sign bit flip in 2c
will have more than 10× greater impact on weight magnitude
than the equivalent flip in SM.

We use Ares to analyze the same set of model instances
using sign-magnitude representation. For CiFar10-VGG, Ima-
geNet ResNet50 and TiDigits GRU, sign-magnitude provides
equal resilience as oracle protection in terms of tolerable bit
error rate (Figure 1), achieving all of the benefit without
special protection of sign bits. For the MNIST FC and LeNet
and ImageNet VGG16 DNNs, the maximum sign-magnitude
BER is within 20% of that achieved with oracle protection.

Thus, SM representation could allow sign bits to be stored
on the same memory as other data, while obtaining the
benefit of ”protecting” them from error. Despite the design and
implementation costs, moving to a sign-magnitude encoding
for weights could result in 10x higher acceptable bit error rate
while using the same number of bits per weight value.

10 7 10 6 10 5 10 4

Bit Error Rate

7

8

9

10

11

%
 C

la
ss

ifi
ca

tio
n

Er
ro

r 2C
SM

Fig. 2. Mean and min/max (indicated by shaded region) classification error
across 20 instances of VGG12 trained on CiFar10 for varying BERs and
different data encodings (two’s complement, 2c, and sign-magnitude, SM).
SM has slower degradation and lower variance, visible as a smoother curve.

IV. FAULT TOLERANCE VARIES ACROSS IDENTICALLY
TRAINED MODELS

Implicit in experiments that examine the fault tolerance of a
single instance of a model [3], [13], [16] is the assumption that
identically trained instances have equivalent fault tolerance.
However, this assumption does not necessarily hold. Even after
isolating a specific dataset, model architecture, and training
hyperparameters, we find a wide distribution of fault tolerance
across training runs. Furthermore, changes to bit representation
can affect the variability of fault tolerance, in addition to the
absolute level.

As with variance of hardware characteristics between de-
vices, variance in the fault tolerance of models on a fixed
device may result in a requirement to design for the worst
case. Thus, studying the variability in fault tolerance has
implications for provisioning hardware if a specific model
architecture is continually re-trained and re-deployed [17].

We examine the variation of fault tolerance across training
runs of a VGG12 model on the CiFar10 dataset. Each model
instance is trained to convergence with identical hyperparam-
eters (e.g., learning rate = 0.1, L2 = 5 ∗ 10−4). We study the
fault rates at different thresholds of accuracy degradation. For
each, uniformly random bit flips are injected across all weight
values, with 50 trials per BER per model instance.

We perform two sets of comparisons. For the first, we take
each model instance’s accuracy on the test set with no fault
injections as that instance’s baseline error. Considering sign-
magnitude and two’s complement encoding, we calculate the
highest BER at which each instance stays below .5%, 1%,
5% and 10% relative increase in classification error from its
baseline error. We refer to this value as relative error, and it is
the metric used in [3]. However, comparing instances to their
own baseline implicitly sets a higher standard for instances
with lower test error. To address this, we fix a common
reference point per model by taking the maximum baseline
error over all instances, and calculating the corresponding .5%,
1%, 5% and 10% accuracy loss thresholds. For each instance,

Instance Base Error
1 6.84%
2 7.42%
3 8.23%
...

Training loop

Dataset (CiFar10)

Model Architecture

Hyperparameters

Inject faults,
compute thresholds

% increase relative to per-model base error % increase relative to max. model base error

S
D

 o
f B

E
R

 a
t X

%
 e

rr
or

 th
re

sh
ol

d

Fig. 3. The process of computing variance in fault tolerance for models with
sign-magnitude (SM) weight encoding. With both per-instance and global
baselines, BERs required to achieve a certain accuracy exhibit less variance
at higher error tolerances (expressed as a percentage of base error).

we then compute the highest BER where the model stays under
each threshold and denote this absolute error.

A. Results: Relative Variation in Fault Tolerance

Even comparing instances relative to their baseline error,
there is nontrivial variation in fault tolerance. For two’s
complement, identically trained instances vary in 0.5% and
1% thresholds by up to 4x and in 5% by up to 4.5x. For sign-
magnitude encoding, BER at the 0.5% threshold varies by
up to 2.6x. For a CiFar-VGG instance retrained with identical
hyperparameters, assuming equal fault tolerance results in over
5% increase in missclassified images across the test set.

Model instances initially degrade smoothly below a BER
of approximately 2 · 10−6 for SM and 2 · 10−7 for 2c, then
rapidly decay (Figure 2). The 10% threshold corresponds to
the knee of the curve at which this rapid decay accelerates,
and we observe that the different instances tend to hit this
level of accuracy degradation at similar BERs. We quantify
this with the geometric standard deviation of the thresholds,
as BERs vary multiplicatively, not additively. The geometric
standard deviation of relative error falls at higher thresholds,
implying versions converge in performance as BER reaches
the knee. However, convergence does not occur until possibly
unacceptable degradation in accuracy (Figure 3).

B. Results: Absolute Variation in Fault Tolerance

Baseline model classification error varies from 7.5% to
8.6% among CiFar-VGG instances, and we choose the lowest
accuracy as an absolute baseline. Examining the accuracy
degradation of all model instances compared to the highest
observed test error, there is up to 16x variance in 0.5%
error threshold. This is because instances with higher baseline
accuracy have a larger margin before reaching the threshold.

But despite up to 16x variance in 0.5% threshold, error
converges at higher thresholds, with all model instances expe-
riencing 10% degradation thresholds within 1.5x of the same

0.5% 1% 5% 10%
Percent classification error degradation

1.0

1.2

1.4

1.6

SD
 o

f B
ER

 a
t X

%
 e

rro
r t

hr
es

ho
ld

Relative SM
Relative 2c

Fig. 4. Geometric standard deviation of relative error thresholds with two’s-
complement (2c) and sign-magnitude (SM) weight encoding. SM encodings
have extremely low variance at higher thresholds.

BER (Figure 3). This strengthens the previous convergence
result, as in both the relative and absolute cases the knee of
the curve is close across all model instances.

These results suggest that the acceptable BER to minimize
impact on classification accuracy differs even among identi-
cally trained instances. A given model can be associated with a
specific BER above which the model accuracy is unacceptable
across all instances, but architects working at lower error
tolerances must consider per-instance variation.

C. Results: Data Encoding Affects Variance

Comparing the variance of percent degradation thresholds
between sign-magnitude (SM) and two’s complement (2c)
reveals a substantial difference. The standard deviation of
relative 0.5% percent error thresholds is similar between SM
and 2c, but falls sharply for SM at higher error degradation
thresholds (Figure 4). At the 10% threshold, SM variance is
over 6x lower, and the knee location is almost completely
invariant among model instances at a BER of 10−5.

For all instances, weight values are concentrated around 0,
with a mean of −.0044 and a standard deviation of at most
.013. Fewer than one weight value in ten thousand exceeds the
M/2 threshold where 2c faults are less damaging. Therefore
sign-magnitude sign bit flips are less likely to catastrophically
damage a layer, and moving to SM representation effectively
mitigates model instance variance due to sign bit vulnerability.

V. CONCLUSIONS

We find that moving from standard two’s complement to
sign-magnitude bit encoding for weights can create up to
an order of magnitude increase in fault tolerance. For many
models, sign magnitude representation performs as well as
oracle protection of the sign bit, potentially enabling storing
sign bits with data rather than specially protecting them.
Additionally, identically trained instances of a model can have
substantial differences in fault tolerance, so fault tolerance
may need to be retested after each retraining run, even with
all hyperparameters unchanged. However, the bit error rate
at which accuracy degradation significantly accelerates is
consistent across instances.

The sign-magnitude encoding has lower error variation
among instances at all thresholds. For situations where mod-
els must adapt on device, or where multiple training runs
sweeping fault tolerance are cost-prohibitive, sign-magnitude
encoding allows tighter control on the worst case error at a
given bit error rate, in addition to lower mean error.

These experiments were enabled by our updates to the
Ares1 framework. Ares enables further characterization of the
tradeoffs between faults and DNN performance with a flexible
interface for defining fault models and varying design choices.
The open source tool has expanded model support, ability to
perform all injections on GPU, and support for injecting faults
in activations and during training.

REFERENCES

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. ”Deep learning.”
nature 521.7553 (2015): 436-444.

[2] N. P. Jouppi et al., ”In-datacenter performance analysis of a tensor pro-
cessing unit,” 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), Toronto, ON, 2017, pp. 1-12.

[3] B. Reagen et al., ”Ares: A framework for quantifying the resilience of
deep neural networks,” 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), San Francisco, CA, 2018, pp. 1-6.

[4] Hari, Siva Kumar Sastry, et al. ”SASSIFI: Evaluating resilience of GPU
applications.” Proceedings of the Workshop on Silicon Errors in Logic-
System Effects (SELSE). 2015.

[5] B. Reagen et al., ”Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators,” 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), Seoul,
2016, pp. 267-278.

[6] ”PyTorchFI is a runtime fault injector tool for PyTorch to simulate bit
flips within the neural network.” https://pypi.org/project/pytorchfi/, 2020.

[7] L. Zonglei and X. Xianhong, ”Deep Compression: A Compression
Technology for Apron Surveillance Video,” in IEEE Access, vol. 7, pp.
129966-129974, 2019.

[8] Reagen, Brandon, et al. ”Weightless: Lossy weight encoding for deep
neural network compression.” arXiv preprint arXiv:1711.04686 (2017).

[9] Y. Zhou, S. Redkar and X. Huang, ”Deep learning binary neural network
on an FPGA,” 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 281-284.

[10] Donato, Marco, et al. ”On-chip deep neural network storage with multi-
level eNVM.” Proceedings of the 55th Annual Design Automation
Conference. 2018.

[11] Lillian Pentecost and Marco Donato and Brandon Reagen and Udit
Gupta and Siming Ma and Gu-Yeon Wei and David M. Brooks,
”MaxNVM: Maximizing DNN Storage Density and Inference Effi-
ciency with Sparse Encoding and Error Mitigation” in Proceedings of
IEEE/ACM MICRO ’52, pp 769-781, 2019

[12] Gupta, Udit, et al. ”MASR: A Modular Accelerator for Sparse RNNs.”
2019 28th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). IEEE, 2019.

[13] M. Lee, K. Hwang and W. Sung, ”Fault tolerance analysis of digital feed-
forward deep neural networks,” 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp.
5031-5035.

[14] Tambe, Thierry, et al. ”AdaptivFloat: A Floating-point based Data Type
for Resilient Deep Learning Inference.” arXiv preprint arXiv:1909.13271
(2019).

[15] ”PyTorch: An open source machine learning framework that acceler-
ates the path from research prototyping to production deployment.”
https://pytorch.org/, 2020

[16] Mahmoud, Abdulrahman, et al. ”HarDNN: Feature Map Vulnerability
Evaluation in CNNs.” arXiv preprint arXiv:2002.09786 (2020).

[17] Hazelwood, Kim, et al. ”Applied machine learning at facebook: A data-
center infrastructure perspective.” 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2018.

1https://github.com/alugupta/ares

